Assimilation of Diazotrophic Nitrogen into Pelagic Food Webs
نویسندگان
چکیده
The fate of diazotrophic nitrogen (N(D)) fixed by planktonic cyanobacteria in pelagic food webs remains unresolved, particularly for toxic cyanophytes that are selectively avoided by most herbivorous zooplankton. Current theory suggests that N(D) fixed during cyanobacterial blooms can enter planktonic food webs contemporaneously with peak bloom biomass via direct grazing of zooplankton on cyanobacteria or via the uptake of bioavailable N(D) (exuded from viable cyanobacterial cells) by palatable phytoplankton or microbial consortia. Alternatively, N(D) can enter planktonic food webs post-bloom following the remineralization of bloom detritus. Although the relative contribution of these processes to planktonic nutrient cycles is unknown, we hypothesized that assimilation of bioavailable N(D) (e.g., nitrate, ammonium) by palatable phytoplankton and subsequent grazing by zooplankton (either during or after the cyanobacterial bloom) would be the primary pathway by which N(D) was incorporated into the planktonic food web. Instead, in situ stable isotope measurements and grazing experiments clearly documented that the assimilation of N(D) by zooplankton outpaced assimilation by palatable phytoplankton during a bloom of toxic Nodularia spumigena Mertens. We identified two distinct temporal phases in the trophic transfer of N(D) from N. spumigena to the plankton community. The first phase was a highly dynamic transfer of N(D) to zooplankton with rates that covaried with bloom biomass while bypassing other phytoplankton taxa; a trophic transfer that we infer was routed through bloom-associated bacteria. The second phase was a slowly accelerating assimilation of the dissolved-N(D) pool by phytoplankton that was decoupled from contemporaneous variability in N. spumigena concentrations. These findings provide empirical evidence that N(D) can be assimilated and transferred rapidly throughout natural plankton communities and yield insights into the specific processes underlying the propagation of N(D) through pelagic food webs.
منابع مشابه
Isotope baseline shifts in pelagic food webs of the Gulf of Mexico
Diazotrophic inputs by Trichodesmium have been shown to support production in tropical and subtropical marine environments, but the importance of Trichodesmium in the Gulf of Mexico has not been widely investigated. Here, we use stable carbon (δ13C) and nitrogen (δ15N) isotopes to determine whether diazotrophy impacts the isotope baselines of pelagic food webs in the northern Gulf of Mexico. Ph...
متن کاملNitrogen Fixed By Cyanobacteria Is Utilized By Deposit-Feeders
Benthic communities below the photic zone depend for food on allochthonous organic matter derived from seasonal phytoplankton blooms. In the Baltic Sea, the spring diatom bloom is considered the most important input of organic matter, whereas the contribution of the summer bloom dominated by diazotrophic cyanobacteria is less understood. The possible increase in cyanobacteria blooms as a conseq...
متن کاملBenthic-Pelagic Linkages in Lakes: Using Stable Isotopes to Quantify Effects of Residential Shoreline Development on Lake Ecosystems
Historically the importance of benthic primary production to the structure and function of lake ecosystems has been underestimated. With increasing recognition of the importance of benthic-pelagic linkages in lakes, researchers recently have demonstrated that benthic production can ‘subsidize’ pelagic food webs. These findings indicate that loss of benthic production may lead to a reduction in ...
متن کاملTerrestrial, benthic, and pelagic resource use in lakes: results from a three-isotope Bayesian mixing model.
Fluxes of organic matter across habitat boundaries are common in food webs. These fluxes may strongly influence community dynamics, depending on the extent to which they are used by consumers. Yet understanding of basal resource use by consumers is limited, because describing trophic pathways in complex food webs is difficult. We quantified resource use for zooplankton, zoobenthos, and fishes i...
متن کاملMesozooplankton Graze on Cyanobacteria in the Amazon River Plume and Western Tropical North Atlantic
Diazotrophic cyanobacteria, those capable of fixing di-nitrogen (N2), are considered one of the major sources of new nitrogen (N) in the oligotrophic tropical ocean, but direct incorporation of diazotrophic N into food webs has not been fully examined. In the Amazon River-influenced western tropical North Atlantic (WTNA), diatom diazotroph associations (DDAs) and the filamentous colonial diazot...
متن کامل